Yost Brothers, LLC Anacortes, WA

Blue Q Labs, LLC Lebanon, OR

We want to fully <u>emerge from the technology proof-of-concept</u> phase and are in need of <u>critical mass</u> and seeking <u>resources</u> to achieve <u>technology acceptance and commercialization</u>

Problems Solved

1. Neutralize acidic pH in water without adding hydroxide

- 2. <u>Remove hazardous metals</u>/radionuclide substances from water without adding chemicals (e.g., Zn to <<0.1 mg/L)
- 3. Reduce mass of solid residuals (45-65% less than lime)
- 4. <u>Metal leachability</u> from solids, sludges, tailings, sediments, etc. (because of short/long-term exposure to acid rain, acid mine/acid rock drainage, mine pool, acidic leachate, and watershed drainage fluids)

The Technology(ies)

1. Advanced Neutralization (AN): Acidity/Metals in Mine Drainage

2. MBT: Leachable Heavy Metals/Radionuclides in Solids

<u>Combined</u>: A Solution for AM/ARD at active/legacy mine sites

Our Team is Seeking:

1. A new member (Colorado-based)

2. Grant/funds to fully emerge from Proof-of-Concept

3. Technology Emergence - Field Pilot Program:

a. AN and AN combined with MBT at 20-100 gpm on AMD (4-6 week run-time), and with;

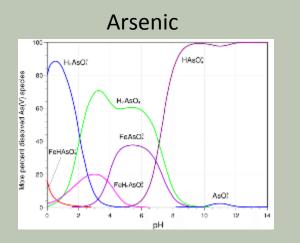
 In-Mine Placement of MBT Treated Solids (partially funded) Karl W. Yost Yost Brothers, LLC Anacortes, WA

- See EXPO Bios
- See LinkedIn (very dated)
- Directed/Managed >\$300 mm in site remediation/cleanup
- Over 60 NPL Site project cleanups (Region 5, 10, and across country)
- 2 Technologies emerged from former USEPA SITE Program to commercialized business sectors (MAECTITE and MatCon)

Rick Alexander Blue Q Labs, LLC Lebanon, OR

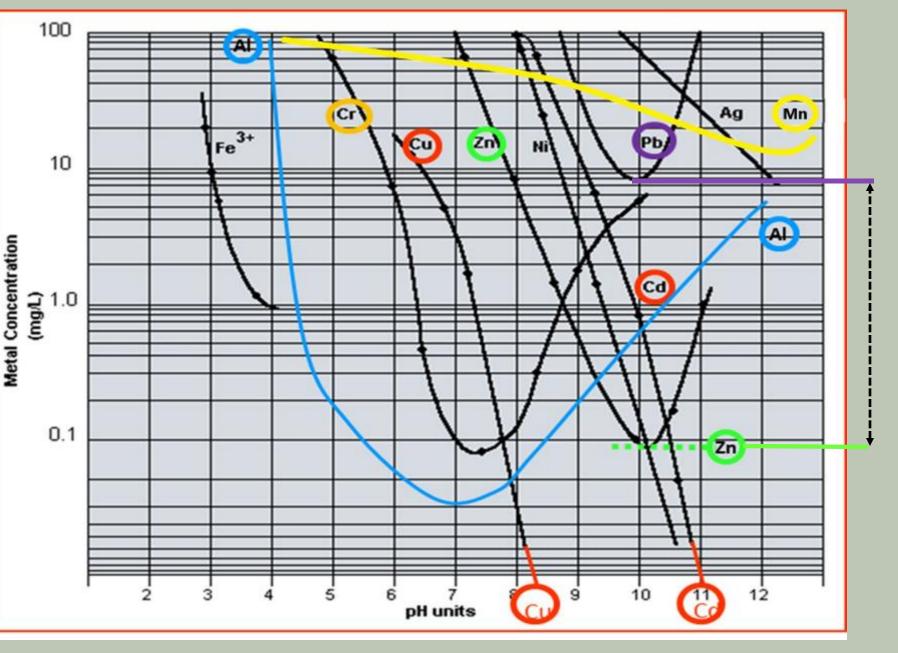
- Over 40+ years in fabrication, construction, and design/development
- Developed from concept through world-wide commercialization, a test unit to evaluate levels of formaldehyde in particle and chip board for mill site use. Eliminated 6-8 weeks of product curing time allowing for safe accelerated product release from point of manufacture to retail. Major cost savings throughout industry by streamlining just-in-time inventory management

New Team Member Colorado USA


- Market Survey and Review
- Customer Identification and Industry Diligence

??

- Business Solution Sanity Check
- Grant Applications/Technical Writing
- Business Development
- Company Management Involvement


"The Silo" Metallic Hydroxide Precipitation Curves (R-OH⁻)

- Multiple pH Points needed for maximized heavy metal precipitation from AMD Fluids
- Hydroxide Instability due to contact with Acidity

SILVERTON

EXPO

Yost Brothers – HMR Solutions – Blue Q Labs

Comparison of R-Hydroxide Solubility Products (Ksp)

VS.

Ksp Values for R-MBT Anions

	<u>Quicklime</u> Ksp	<u>MBT</u> Ksp	
<u>Metal</u>	<u>R-Hydroxide</u>	<u>R-MBT</u>	<u>Comment</u>
Aluminum	3 × 10 ⁻³⁴	9.8 x 10 ⁻²¹	amphoteric
Arsenic	soluble	N/A	oxidation state
Cadmium	5.3 x 10 ⁻¹⁵	2.53x10 ⁻³³	
Cobalt	1.1 x 10 ⁻¹⁵	2.05x10 ⁻³⁵	
Copper	1.6 x 10 ⁻¹⁹	8×10 ⁻³⁷	
Iron (II)	4.9 x 10 ⁻¹⁷	3.6x10 ⁻⁴¹	oxidation state
Iron (III)	2.79 x 10 ⁻³⁹	1 x 10 ⁻⁸⁸	
Lead	1.43×10 ⁻²⁰	7.9 x 10 ⁻⁴³	amphoteric
Manganese	2.1 x 10 ⁻¹³	1 x 10 ⁻²²	oxidation state
Mercury	3.1 x 10 ⁻²⁶	2x10 ⁻⁵³	oxidation state
Nickel	5.5 x 10 ⁻¹⁶	4.74x10 ⁻³²	
Zinc	4.1 x 10 ⁻¹⁷	1.0 x 10 ⁻³²	amphoteric

NOTES:

1) Amphoteric properties and valence state of metal ions are critical to solubility

2) Ksp values are nominal, but typically accepted in the literature

3) Quicklime can be substituted with any hydroxide contributing source or pozzolanic alkaline reagent

Yost Brothers – HMR Solutions – Blue Q Labs

Advanced Neutralization - AN (Water)

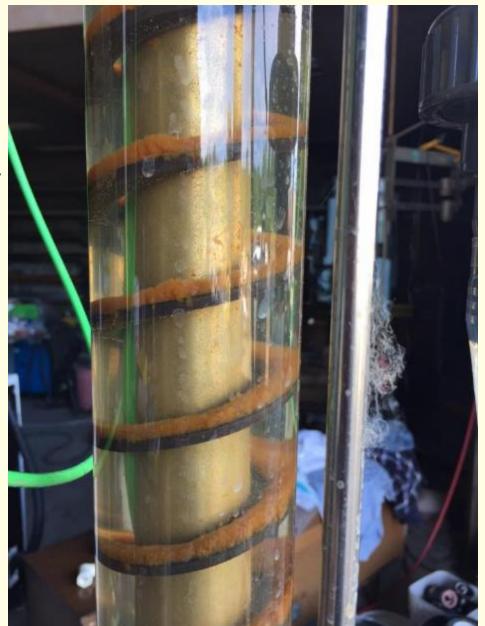
- Treats acidity & removes heavy metals (total and dissolved)
- Electric power to an array of combined components.
- Uses constituents in water to manufacture needed chemical reactants, including hydroxide and metallic oxides (that precipitate)
- Lower cost than conventional HDS and lime/lime-polymer mine water treatment.
- Compatible with MBT and other solid treatment/dewatering technologies
- Patents Pending

<u>Advanced Neutralization – Engineering</u>

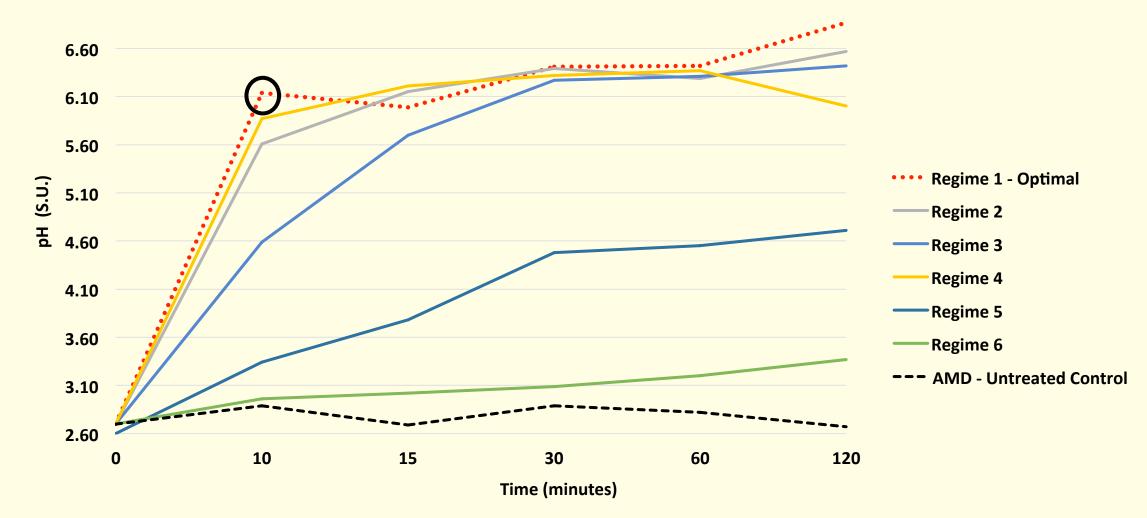
1-5 gpm

5-20 gpm

MBT: Leachable Heavy Metals in Solids HMR Solutions, LLC Brooklyn, NY


- Treatment of leachable heavy metals in soil, sediments, paste, tailings, slurries, water treatment residuals, and other solid waste
- MBT Reagent supplier
- Technical/operational support provider
- Treatability/Optimization Studies
- Technology patents pending (advancements on MBS since EPA SITE evaluation in late 1990's)

Studies and Field Trials


- Success Mine, Wallace ID
- Bunker Hill Mining & Metallurgical Complex NPL Site, Kellogg/Smelterville, ID
 - Russel Tunnel
 - Reid Tunnel
 - Kellogg Tunnel
 - Jig Tailings, South Fork of the CDA River

• Bonita Peak Mining District NPL Site, CO

- Mogul Mine, Gladstone CO
- Cement Creek, Gladstone CO
- American Tunnel, Gladstone CO
- Gold King Mine, Gladstone CO
- Summitville Mine, Summitville, CO

AMD - AN (Advanced Neutralization) Process Stage 1 In-Water OH⁻ Mfg.: pH v. Time

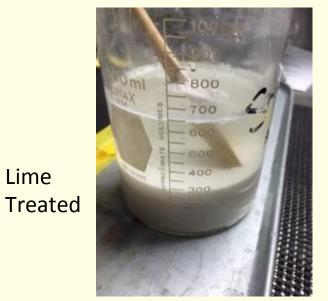
Yost Brothers, LLC -- Blue Q Labs, LLC

Bunker Mine/Kellogg Tunnel, Kellogg ID

Active Mine – AMD

Bunker Mine/Kellogg Tunnel, Kellogg ID

Issues: pH, Heavy Metals Technologies: AN Unresolved: Sulfate removal, Mn, Zn


		AN - Treated				
<u>Units</u>	<u>Untreated</u>	<u>R-1</u>	<u>R-2</u>			
mg/L	1.23	0.476	0.05			
mg/L	1.27	0.893	0.19			
mg/L	<0.025	<0.0030	0.0004 J			
mg/L	0.040	<0.0030	0.0004 J			
mg/L	0.0753	0.0500	0.020			
mg/L	0.0750	0.0492	0.021			
mg/L	207	NT	197			
mg/L	0.059	0.00993	0.0018 J			
mg/L	0.0600	0.0107	0.0014 J			
mg/L	18.8	36.8	1.98			
mg/L	88.6	44.9	1.98			
mg/L	0.558	<0.00300	0.00027 J			
mg/L	0.607	0.00539	0.00086			
mg/L	113	NT	74.7			
mg/L	68.2	61.0	46.66			
mg/L	68.8	60.5	48.04			
mg/L	0.0615	0.162	0.024			
mg/L	0.059	0.165	0.025			
mg/L	1430	NT	858			
mg/L	40.3	14.5	2.197			
mg/L	50.2	15.1	2.296			
S.U.	2.34	6.74	7.54			
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	mg/L 1.27 mg/L <0.025	UnitsUntreatedR-1mg/L1.230.476mg/L1.270.893mg/L<0.025			

<u>Cement Creek Drainage Basin, Gladstone CO</u> August 2015

AN vs. Lime Treatment – Mogul Mine AMD

August 17, 2015 Sample Collection								
Dissolved Metals								
<u>Parameter</u>	<u>Units</u>	<u>Untreated</u>	Lime ⁻	AN Treated				
			pH 7.86 S.U.	pH 10.34 S.U.				
Aluminum	mg/L	3.5	0.05	0.17	0.06			
Arsenic	mg/L	<0.0025	0.0004 J	0.0003 J	0.0002 J			
Cadmium	mg/L	0.054	0.031	<0.00025	0.000125 J			
Chromium	mg/L	N/A	<0.001	<0.001 <0.001				
Copper	mg/L	0.0187	0.002 0.0007 J		0.0013 J			
Iron	mg/L	25.5	<0.050	<0.050	0.03 J			
Lead	mg/L	0.251	0.00016 J	<0.0005	0.00016 J			
Manganese	mg/L	28.1	22.10	6.80	0.30			
Nickel	mg/L	0.016	0.017	0.007	0.009			
Silver	mg/L	0.00006 J	<0.0002	<0.0002	<0.00001			
Zinc	mg/L	32.1	8.740	0.022	0.019			
рН	S.U.	3.46	7.86	10.34	6.48/7.52			

Lime

AN

Treated

NOTES:

1) Lime treated samples w/calcium hydroxide to pH indicated.

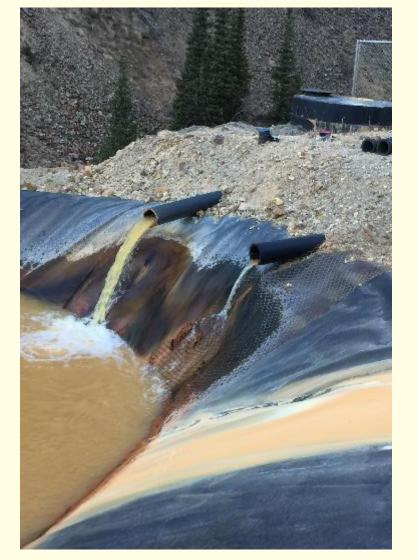
- 2) pH measured in field/treatabilty laboratory
- 3) No filtration in treatment. Samples settled 2 hrs.
- 4) Untreated sample data by Green Analytical Laboratory, Durango, CO
- 5) Treated sample data by Edge Analytical, Inc., Burlington, WA

AN Solids Settling Times

Left to Right:

2 minutes 5 minutes 7 minutes 10 minutes

30 minutes


9.86 gallons of Mogul Mine AMD \rightarrow 86.7 g of AN solids (air dried to damp paste)

Gold King Mine, Gladstone CO

April 13, 2016 – USEPA Settling Pond/Lime/Polymer and Solids Dewatering System

Gold King Mine Field Trial (October 2018)

Gold King Mine

Gladstone, CO Legacy Site – Mine Drainage Issues: pH, Heavy Metals Technologies: AN Unresolved: Sulfate, Sulfide, Sulfur

AN Treatability Results

Gold King Mine AMD

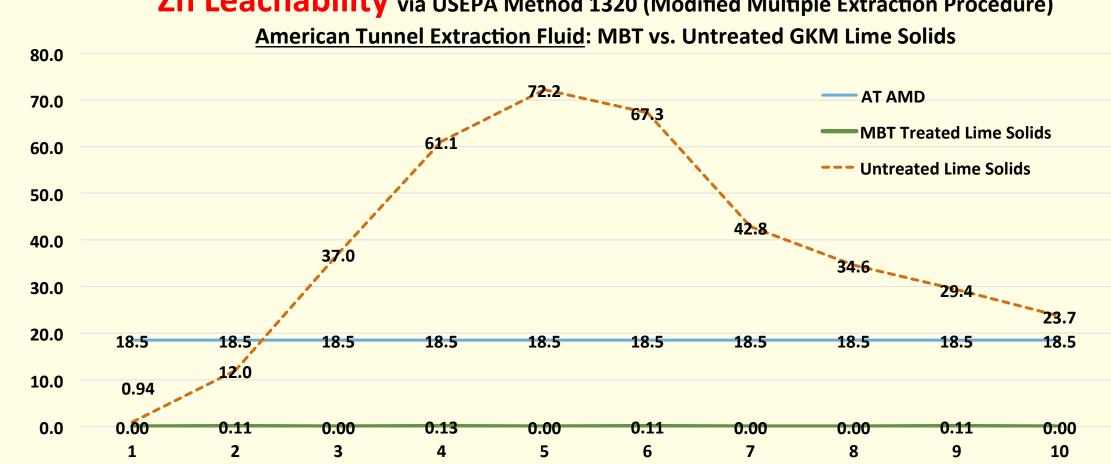
April 12-15, 2016

AMD			AN Treated					
<u>Parameter</u>	<u>Units</u>	<u>Untreated</u>	<u>R-1</u>	<u>R-1A</u>	<u>R-2</u>	<u>R-3</u>		
Aluminum, total	mg/L	13.9	1.43	1.39	DGap	DGap		
Aluminum, dissolved	mg/L	8.94	<0.500	<0.500	DGap	DGap		
Arsenic, total	mg/L	53*	NT	NT	0.0004 J	0.00035 J		
Arsenic, dissolved	mg/L	62*	NT	NT	0.0005	0.00036 J		
Calcium, total	mg/L	367	342	340	143.8	102.2		
Calcium, dissolved	mg/L	371	335	302	151.2	90.8		
Cadmium, total	mg/L	0.0379	0.0285	0.0017	0.0012	<0.00025		
Cadmium, dissolved	mg/L	0.0384	0.0302	0.0014	0.0009	<0.00025		
Copper, total	mg/L	2.96	0.114	<0.0100	0.008	0.002		
Copper, dissolved	mg/L	2.69	0.109	<0.0100	0.0016 J	0.0013 J		
Iron, total	mg/L	58.5	5.58	<0.500	23.54	2.05		
Iron, dissolved	mg/L	43.8	4.28	<0.500	0.03 J	0.007 J		
Lead, total	mg/L	0.0193	<0.0050	<0.0050	0.00017 J	0.0017		
Lead Dissolved	mg/L	0.0086	<0.0050	<0.0050	<0.0005	<0.0005		
Magnesium, total	mg/L	17.7	16.4	13.4	7.4	2.8		
Magnesium, dissolved	mg/L	17.4	16.3	12.1	7.7	2.5		
Manganese, total	mg/L	21.5	18.2	5.53	7.762	0.303		
Manganese, dissolved	mg/L	20.0	18.6	5.44	4.631	0.012		
Sulfate	mg/L	1685*	983	811	NT	NT		
Sulfide, total	mg/L	NT	NT	NT	<0.05	NT		
Sulfur, total	mg/L	NT	NT	NT	157	153		
Sulfur, dissolved	mg/L	NT	NT	NT	167	166		
Zinc, total	mg/L	21.5	5.54	<0.100	0.038	0.019		
Zinc, dissolved	mg/L	10.1	5.69	<0.100	0.0074	0.001 J		
рН	S.U.	5.2	5.75	7.66	6.62	7.24		
рН	S.U.	3.28*						
* Historic average								

* Historic average

MBT (Solids)

 Renders heavy metals and radionuclides in solids non-leachable and stable long-term to landfill leachate, acid rain, AMD, and other acidic fluids

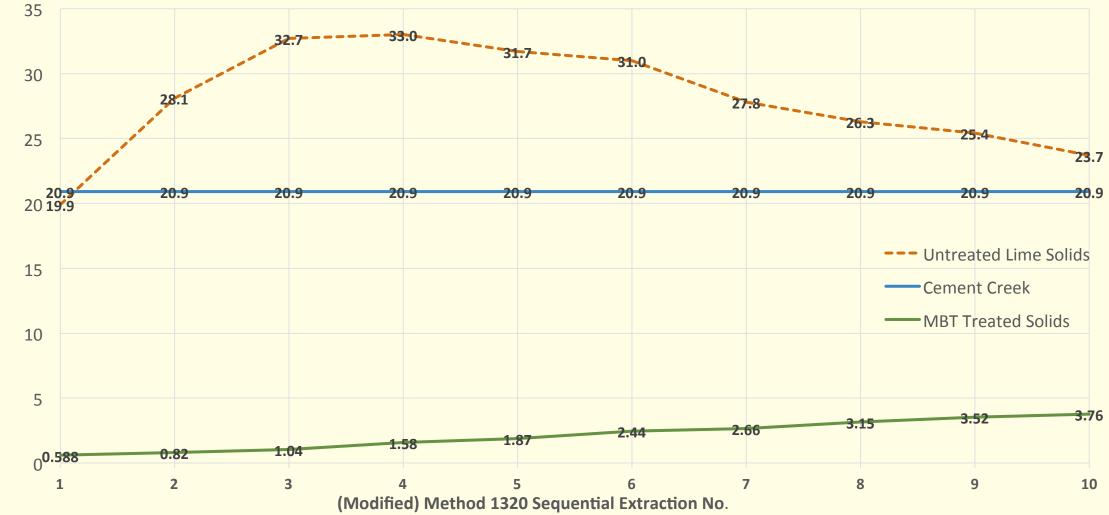

- Regulated hazardous metal substances under CERCLA
- Applicable to slurries, pastes, sediments, tailings, soil, and solids
- Treated material suitable for disposal/management in/near acidic fluid
- Liquid, slurry, and solid reagent forms
- Commercially available from HMR Solutions, Inc.

Gold King Mine (GKM) Acid Mine Drainage (AMD) Gladstone, Colorado

Bonita Peak Mining District (BPMD) NPL Site Field Trials - October 24-30, 2017

BASELINE - Untreated Matrix	<u>рН</u>	<u>AI</u>	<u>Fe</u>	<u>Cd</u>	<u>Co</u>	<u>Cu</u>	<u>Pb</u>	<u>Mn</u>	<u>Ni</u>	<u>Zn</u>
Cement Creek Water (mg/L - Metals as Totals)	3.94	4.32	29.1	0.0122	NT	0.084	0.0233	20.9	NT	6.3
American Tunnel AMD (mg/L - Metals as Totals)	3.02	4.61	101	<0.0050	0.148	0.0201	0.0196	44.9	0.0862	18.5
Untreated GKM Lime Solids (mg/Kg - Metals as Totals)	0 20	60 100	246,000	175	146	13,100	64	22,600	103	39,200
Ontreated GRM Lime Solids (mg/Rg - Metals as Totals)	0.29	00,100	240,000	1/5	140	15,100	04	22,000	102	39,200

GOLD KING MINE - FIELD TRIAL DATA (October 2018)

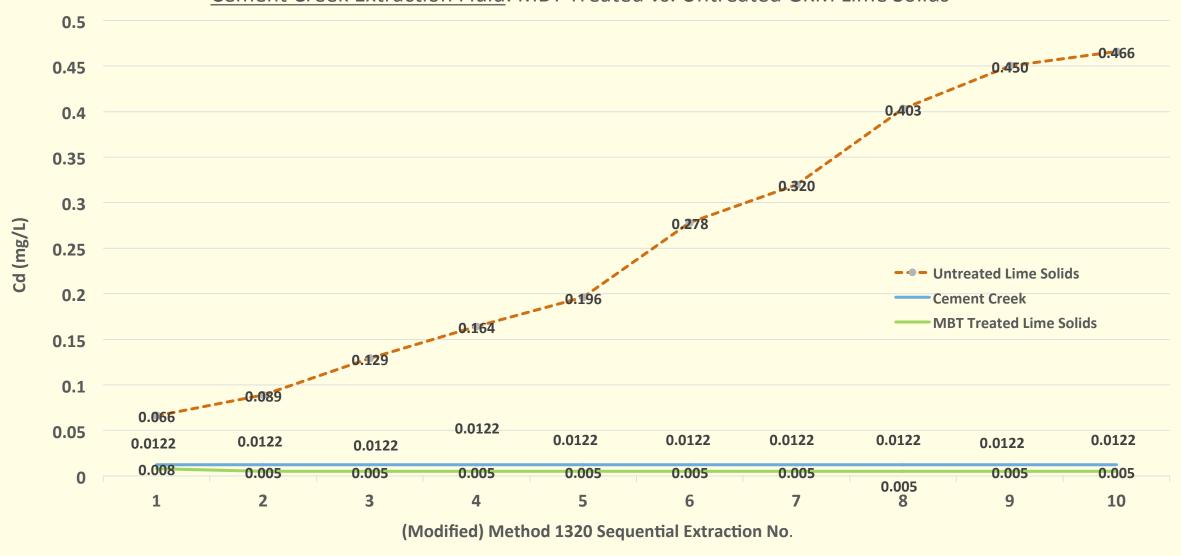

Zn Leachability via USEPA Method 1320 (Modified Multiple Extraction Procedure)

(Modified) Method 1320 Sequential Extraction No.

Yost Brothers, LLC -- HMR Solutions, Inc., Brooklyn, NY -- Blue Q Labs, LLC

Zn (mg/L)

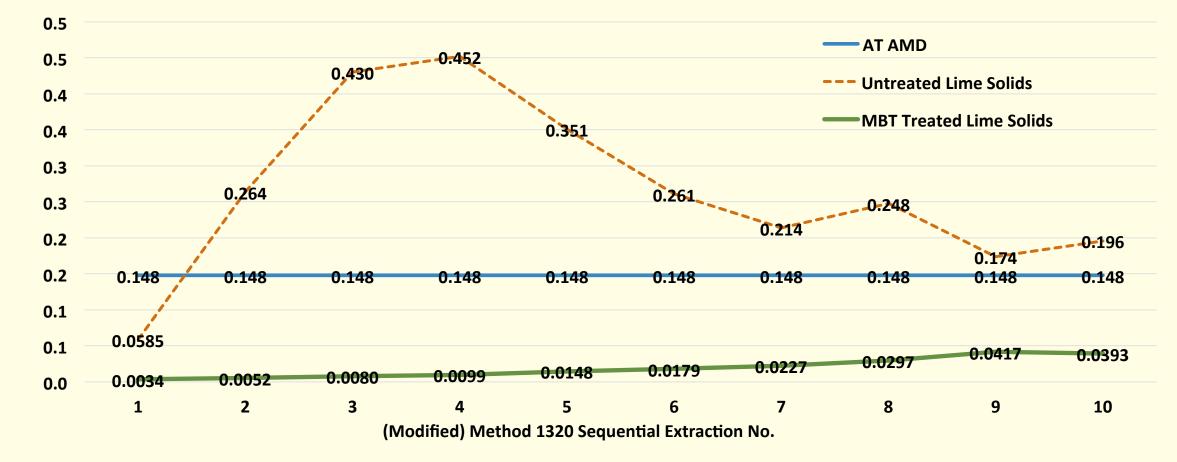
GOLD KING MINE - FIELD TRIAL DATA (October 2017) Mn Leachability via USEPA Method 1320 (Modified- Multiple Extraction Procedure) Cement Creek Extraction Fluid: MBT Treated vs. Untreated GKM Lime Solids



Yost Brothers, LLC -- HMR Solutions, Inc. -- Brooklyn, NY – Blue Q Labs, LLC

Mn (mg/L)

GOLD KING MINE - FIELD TRIAL DATA (OCTOBER 2018)

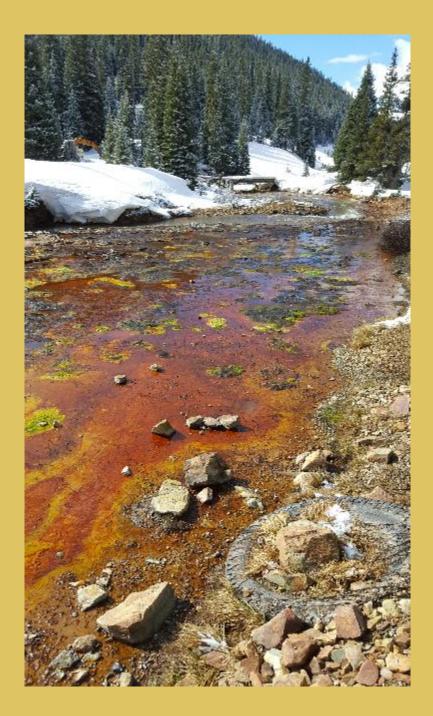

Cd Leachability via USEPA Method 1320 (Modified - Multiple Extraction Procedure) Cement Creek Extraction Fluid: MBT Treated vs. Untreated GKM Lime Solids

HMR Solutions, Inc. -- Brooklyn, NY

GOLD KING MINE - FIELD TRIAL DATA (October 2018) Co Leachability via USEPA Method 1320 (Modified Multiple Extraction Procedure)

American Tunnel Extraction Fluid: MBT vs. Untreated GKM Lime Solids

Yost Brothers, LLC -- HMR Solutions, Inc., Brooklyn, NY -- Blue Q Labs, LLC


Co (mg/L)

BENEFITS and ADVANTAGES

- No alkaline reagents or polymers
- Remote site locations
- Low labor, limited expendables
- Sized for in-mine setup/operations, e.g., shipping container or smaller housing
- Generates 60-75% less solids than conventional lime/polymer systems
- Powerable by penstock/turbine "bolt-on" to treatment plant discharge with potential for excess power sale to the grid

Our Team is Seeking: 1. A new member (Colorado-based) 2. Grant/funds to fully emerge from Proof-of-Concept **3.** Technology Emergence: AN technology a. Field pilot program (4-6 weeks) for AN and AN combined with MBT at 20-100 gpm on AMD **b.** In-Mine Placement of MBT Treated Solids (partially funded)

QUESTIONS?

Karl Yost Yost Brothers, LLC karlwyost@gmail.com (425) 508-3230

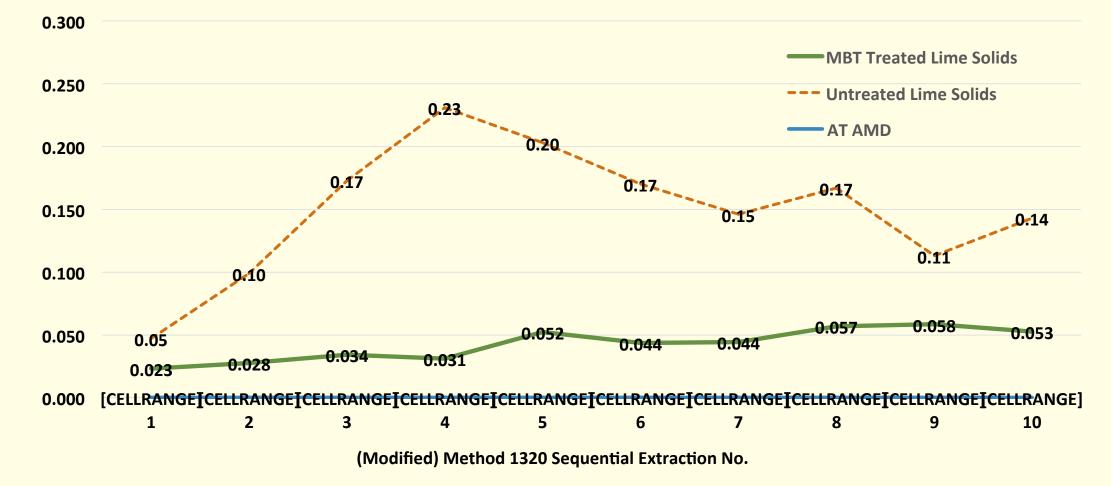
Rick Alexander Blue Q Labs, LLC Blueqlabs@gmail.com (541) 974-5850

INTERESTED CUSTOMERS

- Regulatory Agencies/Land Managers
- Mining/Metal "Workings"/Manufacturing Companies
- Well field services/Injection well fluid disposal companies
- Solution-oriented engineering firms (US and Canada)
- Savvy remediation/environmental construction contractors

Desirable Add-on Options: 1. AN:

- a. hydropower & power management **b.** Speciated metal recovery 2. In-mine Work: a. processing of AMD and solids **b.** dewatering & disposition of MBT treated solids **3.** Expanded analytical testing
- 4. Mineralogical evaluation of MBT treated solids


MBT - INVESTING OPPORTUNITIES

Contact HMR Solutions, Inc.

GOLD KING MINE - FIELD TRIAL DATA (October 2018)

Ni Leachability via USEPA Method 1320 (Modified Multiple Extraction Procedure)

American Tunnel Extraction Fluid: MBT vs. Untreated GKM Lime Solids

Ni (mg/L)

Yost Brothers, LLC -- HMR Solutions, Inc., Brooklyn, NY -- Blue Q Labs, LLC

CONTACT INFORMATION

Yost Brothers, LLC/Blue Q Labs, LLC HMR Solutions, Inc.

> Karl Yost (425) 508-3230 karlwyost@gmail.com

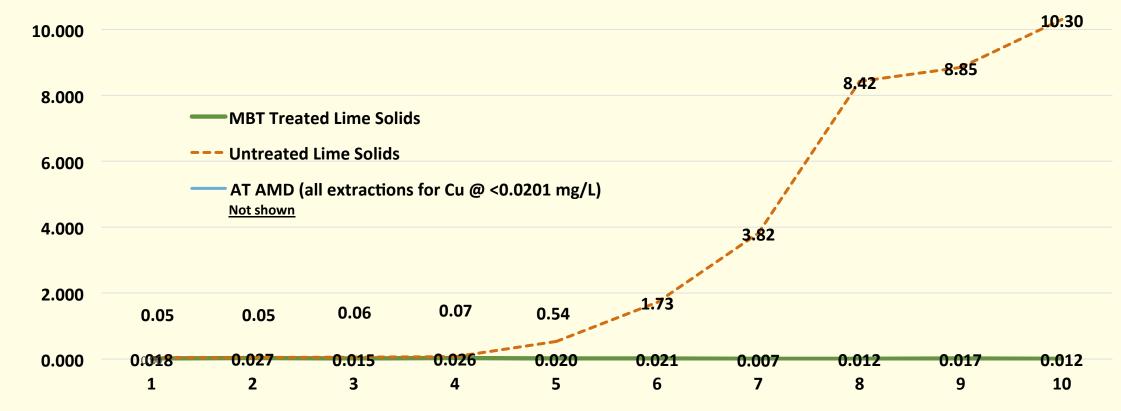
Rick Alexander (541) 974-5850 Blueqlabs@gmail.com

AN - CURRENT STATUS for Acidity and Heavy Metals Treatment in AMD

- 1) Full-scale in 3-4 months for up to 20-30 gpm
- Onsite Pilot Trial needed for 4-6 week duration to gather data for upscaling to 100+ gpm system for full-scale deployment in 9-12 months
- 3) Ready for incorporation of AN residual solids dewatering and MBT processing at AMD influent flow rate of 15-20 gpm
- 4) Require guidance for effluent water quality parameter limitations

CURRENT STATUS – MBT for Metals in Solids

- 1) Ready to go full-scale in 3-4 weeks from a Notice-to-Proceed under fixed and unit price line-item contract terms
- 2) Production rate range of up to 75-150+ tons per hour
- 3) Untreated <u>stockpile to treated stockpile or slurry</u> or untreated <u>slurry to treated slurry</u>
- 4) Mobilization Setup/Startup Processing Decon/tear-down – Demobilization
- 5) Process control testing
- 6) Validation/confirmation of treatment by Others


BENEFITS and ADVANTAGES

Frac Water - Backflow and Produced

- Minimizes energy and pressure requirements for deep injection well disposal of spent fluids
- High potential to allow re-sale and reuse of spent water not previously possible
- Treated water suitable for future make-down
- Compact and Portable

GOLD KING MINE - FIELD TRIAL DATA (October 2018)

Cu Leachability via USEPA Method 1320 (Modified Multiple Extraction Procedure) <u>American Tunnel Extraction Fluid</u>: MBT vs. Untreated GKM Lime Solids

(Modified) Method 1320 Sequential Extraction No. Yost Brothers, LLC -- HMR Solutions, Inc., Brooklyn, NY -- Blue Q Labs, LLC

Cu (mg/L)